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Domain size effects in Barkhausen noise
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The possible existence of self-organized criticality in Barkhausen noise is investigated theoretically through
a single interface model, and experimentally from measurements in amorphous magnetostrictive ribbon Met-
glas 2605TCA under stress. Contrary to previous interpretations in the literature, both simulation and experi-
ment indicate that the presence of a cutoff in the avalanche size distribution may be attributed to finite-size
effects.@S1063-651X~99!00904-6#

PACS number~s!: 05.40.2a, 75.60.Ej, 68.35.Rh
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The Barkhausen effect consists of magnetic noise cau
by erratic jumps in the magnetization of a ferromagnetic m
terial, under an increasing applied magnetic field@1#. A
simple explanation for this effect is the combination of ra
dom pinning of domain walls by defects and the drivi
external field, which is essentially the same mechan
present in stick-slip processes@2#. Recently the statistica
behavior of Barkhausen noise has attracted much inte
due to the possibility of providing an experimental realiz
tion of self-organized critical~SOC! behavior @3–5#. The
subject is controversial, however. We concentrate here on
results obtained by Urbach, Madison, and Markert~UMM !
@4# and Perkovic´, Dahmen, and Sethna~PDS! @5#.

UMM measured the avalanche size probability distrib
tion function in an Fe-Ni-Co alloy, and found power-la
decay over approximately two decades, followed by an
ponential cutoff. The same result was also observed in
merical simulations of the interface motion. The power-la
behavior, obtained without any intentional fine tuning of p
rameters, suggests that this system self-organizes into a
cal state. On the other hand, PDS argued that such beh
can be explained without recourse to SOC concepts: in t
view, the power-law decay followed by a cutoff is eviden
that the system isnearbut not quiteat a conventional critical
point. They performed simulations for the random-field Isi
model~RFIM! under an external field, taking the local~pin-
ning! fields to be Gaussian disordered with standard de
tion R. The avalanche-size distribution is also characteri
by a power law followed by a cutoff, and the power-la
regime increases over several decades asR approaches a
critical disorderRC .

Although UMM and PDS approach the problem with a
parently similar models, their conclusions regarding the cr
cal nature of the Barkhausen noise are in contradiction. H
we show that in reality, the ingredients used in either mo
differ in crucial aspects where the onset of SOC is c
cerned, so it is not surprising that they end up with differe
findings.
PRE 591063-651X/99/59~4!/3884~4!/$15.00
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We investigate this question by using the simple mo
proposed by UMM@4# for the motion of a single domain
wall in the Barkhausen noise regime. We find that the ex
tence of a cutoff in the UMM model can be traced back
finite-size effects; experimental results, also to be describ
bear out the idea that the cutoff to be found there origina
from corresponding aspects in real systems.

In UMM’s model, the interface at timet is described, in
space dimensionalityd, by its heighth(rW i ,t), whererW i is the
position vector of sitei in a (d21)-dimensional lattice. At
each t, the height functionhi5h(rW i ,t) is assumed to be
single valued, so there are no overhangs on the interf
Thus the interface element corresponding to
d-dimensional position vectorrW i5(rW i ,hi) may be unambigu-
ously labeledi. Simulations are performed on aLd213`
geometry, with the interface motion set along the infin
direction. Therefore finite-size effects are controlled by t
length parameterL. Each elementi of the interface experi-
ences a force of the form

f i5u~rW i !1
k

zF (j 51

z

hl j ~ i !2zhi G1He , ~1!

where

He5H2hM . ~2!

The first term on the RHS of Eq.~1! represents the pinning
force, u, and brings quenched disorder into the model
being chosen randomly, for each lattice siterW i , from a
Gaussian distribution of zero mean and standard deviatioR.
Large negative values ofu lead to local elements where th
interface will tend to be pinned, as described in the simu
tion procedure below. The second term corresponds to a
operative interaction among interface elements, assu
here to be of elastic~surface tension! type. In this terml j ( i )
is the position of thej th nearest neighbor of sitei andz is the
coordination number of the (d21)-dimensional lattice over
3884 ©1999 The American Physical Society
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which the interface projects. The tendency of this term is
minimize height differences among interface sites: hig
~lower! interface elements experience a negative~positive!
force from their neighboring elements. The force constank
gives the intensity of the elastic coupling, and is taken h
as the unit forf. The last term is the effective driving force
resulting from the applied uniform external fieldH and a
demagnetizing field which is taken to be proportional toM

5(1/Ld21)( i 51
Ld21

hi , the magnetization of the previousl
flipped spins for a lattice of widthL.

Other models discussed in the literature@5–7# have the
same basic ingredients described in Eq.~1!, namely, local
quenched disorder, a cooperative term, and a driving field
the RFIM, for example, the cooperative term is not elas
but is driven by nearest-neighbor exchange interactions@5#.
Accordingly, power-law distributions are usually obtain
along several decades of avalanche sizes; however, the q
tion of whether an SOC-like mechanism is present is an
together different matter. What is essential for SOC is tha
fine tuning of parameters be required to keep the system
critical state. Such a distinction is clearly illustrated in R
@4#, where several variants of the present model were in
duced. It was established that even without including a
demagnetizing effect at all, a power-law distribution of av
lanche sizes would arise if the external field were kept cl
to its ~sharply defined! critical value for interface depinning
Including a demagnetizing field proportional to the loc
magnetization did away with fine tuning: rather, the effect
field H2hM was seen to stay approximately constant asH
and consequentlyM increased. Even then, the negative au
correlation between avalanche sizes at short times~observed
in experiments, and also believed to be an essential featu
the theory of SOC! only arose in simulations when theglo-
bal magnetization termHe shown in Eq.~2! was considered
Given the established adequacy of the UMM model to
scribe SOC-like aspects of experiments, we concentrate
simulations in that same model.

We start the simulation with a flat wall and zero appli
field. All spins above it are unflipped. The forcef i is then
calculated for each site, and each spin at a site withf i>0
flips, causing the interface to move up one step. The mag
tization is updated, and this process continues untilf i,0 for
all sites, when the interface comes to a halt. The exte
field is then increased by the minimum amount needed
bring the most weakly pinned element to motion. The a
lanche size corresponds to the number of spins flipped
tween two interface stops. The field value can be used
time scale~the only relevant one in the case!. This mimics
the experimental setup of a linearly increasing field dur
the data acquisition interval~one might as well use the accu
mulated number of interface stops as a surrogate time s
we did both, with the same qualitative results!. As in UMM
@4#, we are implicitly assuming that the experimental situ
tion simulated is one of sufficiently slow driving rate, su
that avalanches do not overlap.

Our simulations have been conducted ind52 andd53,
in square and cubic space lattices respectively. Here we
centrate on the three-dimensional~3D! results. After a tran-
sient, the effective field always settles onto a critical va
Hc which depends onR, k, andh. The fact that the system
tunes itself to a constant effective field is in itself an indic
o
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tion of SOC-like behavior. If the external field is started a
higher value, a large avalanche occurs and brings the ef
tive field back to the adequate value. On the other hand
the field starts from zero there is a transient correspondin
a series of small avalanches. We find that the numbe
avalanches in this transient is proportional toLd21. This
means that an infinite system would need an infinite num
of avalanches to reach criticality. As an illustration of th
behavior, we present in Fig. 1 the effective field in a 3
system forR55.0, k51, andh50.05 for different simula-
tion cell sizesL.

The calculated avalanche-size distribution correspond
a power law with a cutoff, as obtained by UMM i
Barkhausen experiments and in simulations@4#, and also by
PDS@5# within their RFIM model. It was shown in the latte
reference that the cutoff is intrinsic to the RFIM, if the sy
tem is away from the critical pointRC . In what follows we
present evidence that the nature of the cutoff in
Barkhausen effect, both in simulations of the Urbach mo
and in experiments, is a finite-size effect. The character
tion of the cutoff as a finite-size effect was recently su
gested by Narayan@8# through the analysis of a continuum
model closely based on UMM’s, though no attempt w
made there to quantify the relationship. We have exami
the dependence of the cutoff on the simulation cell sizeL by
collecting a series of 100 000 avalanches forL550, 80, 150,
200, and 400. Figure 2 shows the avalanche size distribu
for some values ofL in 3D lattices. The transient was elim
nated by starting the external field nearHc . We can clearly
see that the cutoff shifts to higher values ofA with increasing
L. Following the standard procedure@4,5,7# we seek for a
signature of SOC in a power-law distribution of avalanc
sizes; on top of this, the cutoff must be accounted for, wh
we do phenomenologically via a simple exponential tail@9#:
Thus, the histograms were fitted by the functionP(A)

FIG. 1. Simulation on a 3D lattice for systems withR55.0,
k51, h50.05, and different widths. Starting the external field
H50, the effective fieldHe grows linearly and saturates at a critic
value after a transient. Here we see this behavior as a functio
the avalanche number and, in the inset, the same but with avala
number scaled byL2.
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}A2a exp(2A/A0) with a in the range (1.2360.0221.35
60.02). The parameterA0 , which defines the cutoff size, i
strongly dependent onL: A0}L1.460.1. We have also varied
the disorder parameterR, in an attempt to find an effec
similar to that described by PDS in their RFIM model. How
ever, the final picture was qualitatively always the same
shown in Fig. 2, with roughly the same power-law depe
dence ofA0 on L. In d52 we used lattices of widthL
5100, 500, 1000, 2000, 3000, and 5000 from which a va
of a50.8360.0821.0360.03 andA0}L0.7860.06 were ob-
tained. Thus, we conclude that the presence of a cutoff in
avalanche size histogram is a finite-size effect. Thoug
may seem puzzling that the finitetransversedimensions can
influence the characeristics of interface motion along theun-
bounddirection of growth, a qualitative picture of the corr
sponding mechanism is as follows. Each time t
(d21)-dimensional lattice is swept, the number of distin
chances for the interface to move is of orderN;Ld21; thus,
if the typical probability for a given interface element not
advance~that is, to havef i,0) is p, the interface as a whole
will come to a halt, marking the end of an avalanche, only
f i,0 for all elements. This happens with probabilitypN,
hence for largeL larger avalanches become more probab

The above result clearly demonstrates the different na
of the cutoff in the UMM and PDS simulation models. Bo
models describe domain walls advancing in a disorde
magnetic medium: The key difference between them is
presence of a demagnetizing field, proportional to the gro
ing domain magnetization. This field is an essential elem
to bring the simulations into an SOC regime.

Although variations inL are easily accessible in simula
tions, this is not a trivial parameter to vary in experimen
For magnetic systems, one would expectL to be related to
the typical magnetic domain size in a sample. Magnetic m
terials have the interesting property of magnetostriciti
which is the change in internal domain configurations a
response to applied anisotropic stress. Positive magnetos
tive materials show an increase in internal domain w

FIG. 2. Avalanche size distribution calculated from simulatio
for R55.0, k51, h50.05, and the indicated values of la
tice widths L, in 3D. Thin solid lines are fits to the formP(A)
}A2a exp(2A/A0) with a between 1.23 and 1.35 andA0 , the cut-
off size, increasing as a power ofL ~see text!. The dashed line has
slope21.3, for comparison with UMM’s experimental data.
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lengths under applied stress@10#, and may therefore be em
ployed in investigating experimentallyL-dependent effects
in Barkhausen noise experiments. We performed meas
ments in a disordered material with this property, nam
amorphous magnetostrictive ribbon Metglas 2605TCA un
stresss. Different stress values were applied in order
increase domain wall length, as seen in Ref.@10#. Stress is
expected also to change the domain wall thicknessd
5AA/Ks, whereA is the effective exchange constant,Ks

5 3
2 lSs and lS52731026 is the saturation magnetostric

tion constant for this material. In amorphous materials, fl
tuations in the stress due to local composition fluctuatio
generate the pinning sites for domain walls. Their mag
tudes are much larger than those originated from the exte
forces. Thus, the effect of the applied stresses will be
order the domain wall structure by changing the domain s
and length. The magnetoelastic anisotropy, on the o
hand, tends to stretch existing domain walls@10#.

Metglas 2605TCA samples (80 mm31 mm330
mm) were preannealed in an Ar flow at 300 °C for 15 min
order to decrease the stress level associated with the fab
tion process. The measurements were performed in an o
magnetic circuit. As a consequence, there is a global ef
tive field acting on the domain walls; also, the average m

netization rateṀ (t) and differential susceptibility were kep
constant. The samples were cycled in their hysteresis lo
excited by a slowly varying~triangular, 0.2 Hz, 4 Oe maxi-
mum value! field. The Barkhausen signal was detected b
small coil (5 mm31 mm30.5 mm) tightly wound
around the central part of the sample. Thus, the cross-sec
of the coil was rectangular, approximately following the e
ternal contour of the sample’s cross section. The signal
preamplified by a SR550 low pass amplifier and digitized
a TDA320 oscilloscope. The low pass amplifier was set to
upper frequency limit equal to half the sampling frequen
of 20 kHz. The wave-form generator, current source, a
preamp were fed by batteries in order to increase the sig
to noise ratio. At each cycle and starting from a given va
of a trigger field, a time series was acquired~in a total of 150
for each stress value! and stored for further processing. Fo
each stress level, we identify an avalanche with a jump in
voltage levelV. As in Ref. @4#, a threshold voltage was es
tablished according to experimental resolution, which defi
the low-end cutoff of the measured avalanche distributi
Note, however, that our main concern here is with the sta
tics of the largest avalanches, which will be sensitive
finite-size effects.

The avalanche~voltage jump! size distributions were ob
tained fors50, 17, 30, 80, 100, 150, 180, 230, 300, 40
and 525 MPa. In order to obtain such distributions, a tota
7000 jumps were used for each value of applied stress. S
of these results are shown in Fig. 3. One must note t
especially for low-stress data, the combination of experim
tal resolution available and the intrinsic characteristics
Metglas resulted in a rather narrow power-law region, sp
ning at most a decade and a half~for the highest applied
stress, 525 MPa!. This is to be compared e.g., with two de
cades in UMM’s single experimental result@4#. Bearing in
mind that the reliability of numerical analyses of our data
therefore limited, one still can see some unequivocally
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fined trends. The main point to be taken is that the cu
clearly increases with the applied stress. Since stress
creases the magnetic domains, what we see here is aga
dependence of the cutoff on a typical domain size, in acc
dance with the simulation results. We fitted our experimen
histograms with the functionP(V)}V2a exp(2V/V0). As
expected from our relatively narrow effective resolution, th
yielded quite a large spread in the fitted values ofa, which
turned out to be in the range 0.2960.121.660.1 ~central

FIG. 3. Histogram of voltage jumps for different values of a
plied stress s. Thin solid lines are fits to the formP(V)
}V2a exp(2V/V0) with a between 0.29 and 1.6 andV0 , the cutoff
voltage, increasing as a power ofs ~see text!. The dashed line,
included for comparison with Fig. 2 and with UMM’s experiment
data, has the same slope as the dashed line there,21.3.
e
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estimates increasing, and relative error bars narrowing, w
increasing applied stress!. However, the growing trend of the
cutoff against stress comes out cleanly enough asV0

}s (0.6560.04). The fact that experimental values ofa fall in a
similar range to those from the 3D simulations is both to
expected and in line with the earlier results of UMM. On t
other hand, the power that governs the dependence ofA0 on
s need not coincide with that which relatesA0 to L in the
numerical work. In order to predict a relationship betwe
the two quantities, one would need to work out the conn
tion of the physical mechanisms driving the interplay b
tween finite transverse dimensions and avalanche size
the interface model, to the corresponding ones between
plied stress and domain wall length in actual samples. So
we have not been able to do this.

From the above results we conclude that the cutoff in
avalanche size histogram in Barkhausen systems is a fi
size effect. This, together with the presence of a self-tun
effective field and negative time correlation for short time
is a strong indication that SOC is present. Also, we find t
any attempt to model Barkhausen noise must necessarily
clude the demagnetizing field, for this is the key ingredie
for the above mentioned self-tuning.

Note added.Recently, we became aware of similar wo
~e-print cond-mat 9808224! on samples of Fe64Co21B15 un-
der stress, whereV0;s0.5 is found. We thank G. Durin and
S. Zapperi for interesting correspondence.

This work was partially supported by CNPq, CAPES, a
FAPERGS~Brazil!. We thank M. Novak, J. Urbach, and A
Hansen for interesting discussions.
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